Posted on

Will Your Network Traffic Analysis Spot Today’s Threats?

Network traffic analysis (NTA) is the practice of monitoring and interpreting the data flowing across your network to ensure performance, reliability, and security. Companies rely on a mix of tools — ranging from packet sniffers and flow analysis software to advanced NDR systems — to gain visibility into their network’s behavior.

This guide explores the types of NTA solutions available, the key features that provide visibility and control over your network, and where related technologies like NDR tools fit into a modern, secure network strategy.

But first, I want to start with a few red flags that tell you network traffic is hiding performance bottlenecks, sophisticated cyber threats, or both. Relying on yesterday’s tools can mean missing critical warning signs.

Seven signs you should revamp network traffic analysis

Ideally, network traffic analysis (NTA) gives administrators a clear, real-time view of how data moves across their network. It helps them spot performance issues, track resource use, and identify potential security threats before they become serious problems.

When NTA tools and strategy leave critical blind spots, it will fail to detect performance issues, security threats, or unexpected traffic patterns that could disrupt operations.

Below are some warning signs and scenarios that warrant a review of your current approach and may indicate the need for strategic retooling of your network traffic analysis. Red flags include:

  1. Security incidents or suspicious activity: An uptick in network breaches, unauthorized access, or unusual traffic flows (e.g., data exfiltration attempts or DDoS attacks) indicates that your current strategy may not be adequately monitoring threats or alerting you in real-time.
  2. Unpredictable traffic spikes: If you notice unexpected increases in traffic, such as during off-hours or periods when there should be low activity, it could indicate an issue with how traffic is being managed or even malicious activity. If unpredictable spikes persist, re-evaluate your performance monitoring and threat detection tools to confirm they are giving you full visibility.
  3. Lack of visibility into specific traffic types: If your existing tools or strategy don’t provide clear insight into specific types of traffic — like VoIP, streaming, or encrypted data — it may be time to upgrade to a more sophisticated solution that offers deep packet inspection and greater granularity.
  4. Inconsistent reporting or alerts: If your current system isn’t providing consistent, actionable reports or timely alerts, it’s a sign the network traffic strategy might be outdated or improperly configured. Review your thresholds, detection rules, and alerting policies.
  5. Changes in network infrastructure or traffic demands: As network infrastructure evolves (e.g., shifting to cloud services, remote work, or increased IoT), it’s crucial to ensure that your NTA tools and approach are adapted to these changes, ensuring seamless traffic monitoring and management.
  6. Disconnected network data: If your NTA tools aren’t integrating well across various network segments or systems, it might be hard to get a full picture of network performance or security threats. A unified approach to traffic analysis may be required for better insight.
  7. Compliance or regulatory changes: If new compliance regulations or industry standards (such as GDPR or HIPAA) affect data protection and privacy, it may be necessary to review your NTA strategy to ensure it meets those requirements and avoids potential penalties.

There are other warning signs I haven’t captured here, and new zero-day exploits are emerging everyday.

Taking a proactive approach with NTA is a wise idea. Operating with less than full visibility into your network traffic is asking for trouble — both performance and security are at stake.

After all, once they have access to your network, it only takes two days for attackers to own your data.

What makes improving network traffic analysis so difficult?

As NTA technology evolves, it becomes increasingly powerful and capable of identifying sophisticated threats.

But these enhanced capabilities come with a major caveat: you need some really highly-paid IT resources in-house. The more advanced the tool, the higher the level of experience, expertise, and manpower required to effectively operate and manage it.

A basic network for a single office may be relatively straightforward to implement and monitor with minimal expertise. A large network with cutting-edge NTA platforms requires skilled security professionals who can interpret intricate data, respond to threats quickly, and fine-tune the system to adapt to new attack techniques and ransomware trends.

These factors make powerful NTA solutions more resource-intensive, demanding both skilled personnel and ongoing training to maintain their effectiveness. Organizations must consider not just the technological capabilities of an NTA solution but also the capacity of their team to manage and maximize its potential.

Types of network traffic analysis tools

Network traffic analysis tools are essential for monitoring and optimizing data flow across a network. They help identify bottlenecks, troubleshoot issues, and ensure efficient use of resources. The main categories of network traffic analysis tools are:

  • Packet sniffers: These tools capture and analyze raw network traffic at the packet level. Common tools, like Wireshark, provide deep insights into the types of data being transferred and help identify issues like packet loss or protocol mismatches.
  • Flow analysis tools: Tools such as SolarWinds and NetFlow Analyzer track flow data, which shows how traffic moves through a network in terms of sessions or connections. These tools focus on aggregate data, such as bandwidth usage, which helps in understanding overall network performance.
  • Network performance monitors: These tools, like PRTG Network Monitor, analyze both traffic and overall network health, including latency, throughput, and device status. They provide real-time monitoring and alerting features to track performance trends and detect anomalies.
  • Intrusion Detection Systems (IDS): These tools, such as Zeek and Snort, monitor traffic for signs of suspicious activity, such as unauthorized access or attacks. They focus on the security aspect of network traffic by analyzing patterns and behavior.

Many of the top tools for network traffic analysis combine multiple functionalities into a single platform. Some examples of “all-in-one” tools include SolarWinds NPM and PRTG Network Monitor, which provide comprehensive solutions for both monitoring and analyzing network traffic.

SEE: Check out this SolarWinds NPM review and this PRTG Network Monitor review to learn more about them. 

These platforms typically integrate packet sniffing, flow analysis, performance monitoring, and even security features into one interface, making them highly efficient for organizations that need a broad view of their network performance and security.

On the other end of the spectrum, you will be able to find some free tools that can do some of these jobs — albeit in a limited fashion with many upsells for their paid tool.

One last thing to note: You will still have to implement a separate Network Detection and Response (NDR) solution to effectively harden network security. The “all-in-one” NTA tools have limited NDR capabilities — most organizations use both to guard against Advanced Persistent Threat (APT) attacks.

Key network traffic analysis features

Focus on the features that will help you achieve the core goals of network traffic analysis: increasing visibility, optimizing performance, ensuring security, and maintaining operational efficiency.

These are five of the most important all-around features I think most people will be interested in. They are also features where depth varies from vendor to vendor.

1. Real-time monitoring and alerts

The ability to monitor network traffic in real time and receive alerts about unusual behavior or performance degradation is essential for proactive troubleshooting and immediate response.

Most NTA solutions offer real-time monitoring and alerts — a good solution minimizes alert fatigue by prioritizing actionable insights. Look for tools that provide context-aware alerts with relevant details and allow for customizable thresholds to suit your network’s unique needs.

Another way to reduce false alarms and endless alerts is using an NTA solution with alert correlation and grouping, which can consolidate related notifications. This can help your team stay focused on the right problems instead of being overwhelmed by redundant or low-priority alerts.

2. Automated traffic classification

Many NTA tools can perform basic traffic categorization, such as distinguishing between general data types like HTTP, DNS, or FTP. A more powerful automated traffic classification feature goes beyond basic categorization by offering granular identification of applications, protocols, and data types, ensuring precise resource allocation.

For example, advanced NTA tools can recognize and categorize specific applications, like identifying Microsoft Teams traffic versus general web browsing. This be critical for identifying where spikes in traffic originate, for example, and make it easier to prioritize discrete  resources and improve overall network performance.

3. Detailed reporting and historical data

The ability to generate detailed, customizable reports enables teams to track trends over time, identify recurring issues, and make data-driven decisions for capacity planning or resource allocation. Historical data is particularly valuable for diagnosing intermittent problems and conducting post-incident reviews, offering a clearer picture of what occurred and why.

4.  In-depth visibility and decryption

Don’t let encryption hide malicious activity. Choose an NTA solution that analyzes both encrypted and unencrypted traffic to uncover hidden threats within data tunnels. Also, look for capabilities that go beyond packet headers to analyze protocols, applications, and user behavior to provide detailed insight into network activity. Always pick an NTA that tracks lateral movement to expose adversaries moving through side channels and prevent threats from going undetected within your network.

5. Integration with other network management tools

Integration with other network management solutions, such as network performance monitoring (NPM) and Security Information and Event Management (SIEM) systems, is vital for creating a unified view of your network’s health.

If the goal is to increase visibility, don’t let network tools live in silos.

There are many additional capabilities, from advanced anomaly detection to customizable dashboards, that can help tailor the tool to your network’s unique needs. The key is not just in selecting the right features, but in using them effectively to gain actionable insights into your network’s performance and security.

At the end of the day, the most powerful tool is the expertise of the team using it.

The real value of your NTA solution lies in how well your professionals understand and leverage its features. As you move forward, trust that the combination of advanced technology and your team’s knowledge will provide the insights needed to stay ahead of evolving threats and optimize network performance with confidence.

Posted on

When to Use Cloud Network Security (And When to Avoid It)

From data storage to business applications and beyond, companies of all sizes rely on the cloud for day-to-day operations and critical business processes. Protecting cloud-based infrastructures with robust security standards is crucial for modern organizations.

Cloud network security is a popular approach. But is it right for your business? Read on to find out.

What is cloud network security?

Cloud network security is a broad term that covers all security measures a company uses to protect its private cloud network, public cloud network, or hybrid cloud network. It includes everything from the technology used to internal policies, processes, and controls.

It helps businesses defend against data breaches, cyber attacks, unauthorized access, service interruptions, and other threats to their infrastructure.

Network security (regardless of how it’s implemented) is just one of the many security layers that businesses use to protect themselves from vulnerabilities. But it’s arguably the most important, as your network is often the first line of defense against attacks.

Deploying cloud network security the right way can be the foundation of your company’s entire approach to IT security.

SEE: How your business can benefit from a network security policy.

How does cloud network security work?

Cloud network security uses multiple defense layers between infrastructure components and devices on your network.

First, software helps set security policies and pre-defined rules for the network. From there, the software inspects all of the data packets and traffic on the network to enforce those policies.

For example, approved users can be granted access to digital assets through an application on the cloud network while unauthorized users are blocked.

It can also integrate with other security protocols, such as gateways and firewalls, to provide organization-wide control over the network. With APIs and other integrations, IT security admins can use cloud network security processes to monitor networks in real time, segment networks, and detect threats based on network patterns.

Many modern cloud security systems depend on AI and machine learning to help detect and block threats, which is something that might not always work with a rules-based security system.

SEE: Check out the best threat protection solutions

Pros and cons of cloud network security

Like any IT security framework or methodology, cloud security has its pros and cons. For most, the positives outweigh the negative.

Benefits and advantages

  • Centralized management — Cloud network security gives IT admins a single place to configure and monitor security policies, including the ability to integrate with on-premises solutions.
  • Automated security monitoring — Once configured, cloud security systems automatically protect against threats without straining IT resources.
  • Data protection — Deploying a cloud network security system helps protect data stored in cloud servers and applications on your network (both in transit and at rest).
  • Compliance — You can set up your network security systems to comply with regulatory standards, like GDPR, PCI DSS, HIPAA, and more.
  • Data encryption — While encrypted data doesn’t prevent breaches or attacks, most cloud network security companies include encryption, which makes it more challenging for bad actors to access data if they breach your network.
  • Real-time threat detection and prevention — When working properly, cloud network security systems automatically detect and block threats to your network as they happen.
  • Scalability — Robust cloud security allows organizations to confidently scale processes and applications using cloud resources, knowing that they’ll have reliable access.
  • Policy-based enforcement — System admins have a more granular level of control based on custom policies that scale with your organization.
  • Reduce risk of breaches and attacks — A cloud network security solution can drastically reduce security vulnerabilities while preventing hacks, malware, ransomware, and other malicious incidents.

Potential drawbacks and challenges to consider

  • Misconfigurations — It can easily be misconfigured and it’s prone to human error.
  • Speed of change — As cloud resources change alongside access controls of different employees, malicious users can exploit vulnerabilities before your policies are updated.
  • DDoS attacks — Advanced DDoS attacks, which can overwhelm servers and disrupt cloud-based services, could prevent authorized users from accessing your system.
  • Accuracy — At times, cloud systems can yield false positives. This can be dangerous if policies are changed due as a result, opening the door for real threats to slip through the cracks.
  • Cost — Advanced cloud systems are expensive to deploy and maintain at scale, especially those using AI technology to monitor network traffic and detect threats in real time.
  • Insider threats — Someone with privileged access could unknowingly (or intentionally) attack systems from the inside.

When it makes sense to use cloud network security for your business

Any business that has heavily invested in cloud infrastructure is a good fit.

This is especially true if you have a lot of data or run numerous applications in the cloud.

It also makes sense for hybrid cloud environments. Because you have a combination of on-premises and cloud infrastructure, a cloud-based security system can help you centralize everything across your network.

Another common reason why businesses use it is to comply with industry-specific or location-specific compliance standards. You can set up your cloud network security policies to adhere to security protocols for GDPR in Europe, PCI compliance for payment acceptance, HIPAA compliance in the medical industry, and more.

If your organization has remote employees who access your network through an encrypted connection, you can also use cloud security to authenticate them and their devices.

When you should avoid cloud network security

Cloud network security is a necessity for most, but it’s not for everyone.

It may not be enough if you’re dealing with sensitive data that requires the strictest security standards. Organizations working on government contracts or handling confidential information may have to meet DoD standards, and not every cloud security system stacks up to those conditions.

Cloud network security solutions may also not be a good fit if you’re using older, legacy systems that can’t easily migrate to the cloud. In this case, you’ll likely need to use an on-premise security solution instead.

Aside from those two scenarios, it’s tough to deploy a cloud network security solution if you have limited IT security resources or your team isn’t familiar with these systems.

They require a lot of fine-tuned configuration. If you don’t have the resources, you can outsource to a third party (which can get very expensive).

Network security best practices

There are a set of standards that are generally considered best practices. Adhering to them is not only great for deploying a robust cloud network, but it can also help you overcome some of the common challenges and drawbacks we covered earlier.

Some of those best practices include:

  • Zero trust network access — The zero trust model requires authentication of every user, application, and device before accessing the network.
  • Micro-segmentation within your network — Limiting communication between applications and services within a network can help contain or isolate attacks.
  • Identity and access management (IAM) solutions — IAM systems can block unauthorized access at the user level, ensuring that even authorized users only have access to the areas they need to do their jobs.
  • Misconfiguration monitoring — Use cloud security posture management (CSPM) tools to identify misconfigurations that could be the result of human error and ensure your configurations are properly set up for specific regulatory compliance standards.
  • Continuous monitoring tools — Rather than periodically checking for attacks, you can use continuous monitoring tools to identify threats in real time.
  • Regular penetration tests — Your IT team should regularly perform penetration tests on your network to identify vulnerabilities and weaknesses. From there, they should work to fix them as fast as possible.
  • Training — Make sure your team understands the risks associated with breaches and cyberattacks so they know exactly what to do in these scenarios.

Ultimately, cloud network security is an ongoing initiative.

It’s not something you can implement once and move on. There are always going to be changes to your network and systems that need to be addressed plus new threats that your team should understand how to handle.